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NOTES AND UNIQUE PHENOMENA

Timing, intensity, and frequency of biomass removalPREDICTING YIELD LOSS IN
affects soybean yield. Yield reduction is less sensitive

INDETERMINATE SOYBEAN FROM to biomass removal during vegetative growth because
soybean can develop new leaf area that can compensatePOD DENSITY USING SIMULATED
for temporarily reduced assimilatory capacity. SingerDAMAGE STUDIES
(2001) reported that yield reductions in indeterminate
soybean from removing the top third of the plant at
V5 were less than biomass removed at R4. AlthoughJ. W. Singer,* R. W. Malone, D. W. Meek,
indeterminate soybean vegetative growth occurs untiland D. Drake
R5, creating new leaf area that increases assimilatory
capacity directly competes with reproductive sink de-Abstract
mand. Fehr et al. (1977) reported that yield of determi-

Developing relationships between seed yield and pod density can nate cultivars was affected more than indeterminate
be useful for predicting yield loss in soybean [Glycine max (L.) Merr.] from 100% defoliation when defoliation occurred fromdamaged by deer (Odocoileus virginianus). The objectives of this

R2 through R6. However, average yield loss from half-research were to (i) develop a modeling tool using differences between
plant cutoff was similar for determinate (33%) and inde-biomass removal treatments and controls for pod density and seed
terminate (34%) cultivars, but there was a significantyield to quantify yield loss and (ii) assess the tool using double cross-
interaction with growth stage (Fehr et al., 1977).validation. Model development using linear and polynomial exponen-

tial (PE) equations was accomplished using 1998–2001 data from White-tailed deer are among the most identifiable
studies examining different biomass removal treatments, varieties, types of wildlife in North America and provide many
and row spacings. The PE model had a slightly higher coefficient of aesthetic, recreational, economic, and ecological bene-
determination (R2 � 0.93) than the linear model (R2 � 0.92). Double fits. However, deer can also cause negative economic
cross-validation of both models produced strong relationships with and ecological impacts in areas where they are over-
high coefficients of determination and predictive ability; however, the abundant locally or regionally. The agricultural commu-model performance statistics indicated that the PE model had higher

nity experiences many of the negative economic impacts.coefficients of determination, lower mean bias error, and more robust
For example, nationwide, deer have been recognized toslope estimates than the linear model. Depending on the end-user,
cause more damage to agricultural crops than any otherthe simplicity of the linear model should be carefully considered in
vertebrate wildlife species (Conover and Decker, 1991),weighing the benefits of each tool. Nevertheless, these approaches

provide robust tools that are not sensitive to moderate abiotic fluctua- costing farmers more than an estimated $100 million
tions, varying cultural practices, and a wide range of temporal biomass each year (Conover, 1997, 1998). The greatest agricul-
removal. Validating the relationship using additional data should be tural damage by deer generally occurs in the northeast-
the next step before implementation. ern and north-central United States where at least 41%

of producers reported damage (Wywialowski, 1994).
Most estimates regarding economic damage to ag-

Pod number and yield in defoliated determinate ricultural crops from deer are based on perceptions of
soybean may be correlated (Board and Harville, agricultural producers (Conover, 1994) and wildlife pro-

1993; Board and Tan, 1995). Goli and Weaver (1986) fessionals (Conover and Decker, 1991). Documented
evaluated complete defoliation of late-planted determi- validation of crop depredation to support or refute per-
nate and indeterminate soybean cultivars at R4 (Fehr ceptions is needed so that damage management policies
and Caviness, 1977), R5, and R6 and concluded that and strategies can be enacted, if necessary, to reduce/
yield loss was primarily attributed to a reduction in the eliminate conflicts between agriculture and deer. As of
number of pods per plant and that the indeterminate 1994, 18 states in the USA had established compensa-
growth habit did not provide an advantage in buffering tion programs for damage caused by ungulates (Wagner
seed yield. However, the pod response to biomass re- et al., 1997).
moval in indeterminate soybean under varying biomass Many of the strategies currently available for quanti-
removal treatments and cultural practices has not been fying wildlife depredation to agriculture can be labor
thoroughly evaluated. intensive and costly, especially when assessing damage

to row crops (Wisconsin Wildlife Damage Abatement
and Claims Program, 2000). A common method forJ.W. Singer, R.W. Malone, and D.W. Meek, USDA-ARS Natl. Soil
quantitative assessment of deer depredation to crops isTilth Lab., 2150 Pammel Drive, Ames, IA 50011; and D. Drake, Dep.

of Ecol., Evolution, and Nat. Resour., Cook College, Rutgers Univ., to construct exclosures randomly placed within a field.
80 Nichol Ave., New Brunswick, NJ 08901. Received 28 March 2003. Vecellio et al. (1994) constructed 5-m-long by approxi-
*Corresponding author (singer@nstl.gov). mately 5-m-wide by 1.8-m-high exclosures for measuring
Published in Agron. J. 96:584–589 (2004).
 American Society of Agronomy Abbreviations: CI, confidence interval; OLS, ordinary least squares;

PE, polynomial exponential; RMSE, root mean squared error.677 S. Segoe Rd., Madison, WI 53711 USA
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stand counts. Soybean seed were dried in a forced-air ovenyield loss in corn (Zea mays L.) and considerably smaller
at 70�C for at least 72 h and weighed to determine yield.areas for measuring wheat (Triticum aestivum L.) losses.

Differences between the control (no biomass removal) andComparisons were made between yield inside and out-
biomass removal treatments were calculated for each replica-side the exclosure to determine yield loss. Although
tion. The independent variable was calculated as the differenceestablishing exclosures requires time and materials, pro- between a treatment and the control for pod density. The

cessing samples for yield determination is the least effi- dependent variable was calculated as the difference between
cient component of this methodology and requires a a treatment and the control for seed yield. Regression analysis
substantial amount of time for each exclosure. Conse- was conducted using treatment means for the difference be-
quently, a relatively quick and accurate methodology tween seed yield and pod density. Mean seed yield for all

observations (n � 352) from 1998–2001 was 433 g m�2to quantify white-tailed deer damage to soybean would
(median � 406 g m�2) with a standard error of 12. Mean podbe of great benefit. The objectives of this research were
density was 1353 pods m�2 (median � 1282 pods m�2) with ato (i) develop a modeling tool using differences between
standard error of 32.biomass removal treatments and controls for pod den-

Ordinary least squares (OLS) methods were employed in-sity and seed yield to quantify yield loss and (iii) assess stead of measurement error methods because the goal of the
the tool using double cross-validation. modeling was prediction and the measurement error in pod

density was small (reliability ratio, � � 0.945; Fuller, 1987).
The OLS procedures were weighted to correct for mild hetero-Materials and Methods
scedasticity. Weighting was accomplished using the inverse

The data presented were collected from 1998 through 2001 variance weight model with the variance proportional to the
in two separate 2-yr field studies. Both studies were conducted prediction (� 2 � ŷ or � 2 � ŷ1/2, where ŷ � predicted value).
on a Quakertown silt loam (fine-loamy, mixed, mesic Typic Treatment means were split at random into two sets with
Hapludult) at the Rutgers University Snyder Research and equal numbers of observations (Montgomery and Peck, 1982).
Extension Farm near Pittstown, NJ (40�30� N, 75�00� W). The Two models were developed for the full data set and each
first study was conducted from 1998–1999 and used indetermi- split data set. To select the best model, double cross-validation
nate soybean ‘Golden Harvest H-1357RR’ planted using con- assessment was performed to assess the predictive perfor-
ventional tillage on 4 June and 27 May 1998 and 1999, respec- mance for each model from each split set (Kaspar et al., 2003).
tively, at 494 000 seeds ha�1 in narrow (18 and 20 cm in 1998 Model performance evaluation criteria were mean bias error
and 1999, respectively) and wide (76 cm) rows. In the second (Fox, 1981), slope, root mean squared error (RMSE), and the
study, indeterminate soybean ‘Pioneer Brand 93B53’ and ‘Ag- coefficient of determination (R 2). Multiple slope estimates
way Brand APK394NRR’ were seeded using no-till on 16 and were evaluated using models with and without the intercept
21 May in 2000 and 2001, respectively, at 518 700 seeds ha�1 through the origin. All analyses were performed using the
in narrow (20 cm), intermediate (41 cm), and wide (76 cm) Statistical Analysis System (SAS Inst., 2001).
rows. Fertilizer was applied according to soil test recommenda-
tions in both experiments. In the first study, soybean was

Results and Discussionevaluated each year following a rye (Secale cereale L.) cover
crop. In the second study, soybean was evaluated each year Results from a simple linear regression of pod density
after corn. Pre-emergence herbicides were used for weed con- difference on yield difference were highly significanttrol in both studies.

using all the data from 1998 through 2001 (n � 76; R 2 �Experimental design in the first study was a randomized
0.92). The PE model also provided a strong relationshipcomplete block in a split-plot arrangement with three replica-
between pod density difference and seed yield (n �tions in 1998 and four in 1999. Main plot was narrow vs. wide
76; R 2 � 0.93). The linear model equation using OLSrow spacing. Subplot treatments were a control and biomass

removal at V5, R1, R4, and all combinations for a total of regression is
seven biomass removal treatments. Subplot size was 15 m2 for

y � �50.1 � 0.421x [1]narrow rows and 23 m2 for wide rows. Biomass removal was
accomplished using hedge clippers to remove top growth by where y � yield difference and x � pod density differ-
measuring the height of each treatment and removing approxi- ence. The 95% confidence interval (CI) for the linear
mately 30% of the average height. Growth stages were deter- model is presented in Fig. 1A. The model using the PE ismined using the control plot as a reference.

In the second study, the experimental design was a random- y � �705 � exp(6.5 � 0.000558x � 0.000000572x2) [2]
ized complete block in a split-split plot arrangement with four

The 95% CI for the PE model is presented in Fig. 1B.replications. Main plot was variety, subplot was row spacing,
and sub-subplot was biomass removal. Soybean biomass was Both models perform well, but the PE has slightly better
removed at V1 � V3 � V6, V6 � R1, R1 � R4 � R6, V1 � interpolation than the linear model. The 95% CI band
V3 � V6 � R1 � R4 � R6, and a control. Sub-subplot size increases as absolute differences increase because of the
was 4 m2 for the narrow and intermediate row spacing and 6 m2

larger error associated with larger differences.
for the wide row spacing. Biomass removal was accomplished These relationships indicate that pod density can be
using scissors to remove top growth by measuring the height used to explain a high degree of the variability in yieldof each treatment and removing approximately 30% of the

across variable precipitation levels with single biomassaverage height. Growth stages were determined using the con-
removal events or repeated biomass removal duringtrol plot as a reference.
vegetative and reproductive growth stages. AlthoughTen and 15 plants per plot, in 1998–1999 and 2000–2001,
precipitation at the experimental site was below averagerespectively, were randomly sampled after physiological matu-
in 1998 and 1999 and close to average in 2000 and 2001,rity to determine pod number and seed yield. Pod number

and seed yield were converted to an area basis using harvest seed yields were similar in 1998 and 2001 and for 1999
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Fig. 1. Relationship between yield difference and pod density difference. Yield difference is between biomass removal treatments and the control
(no biomass removal). The shaded area represents a 95% confidence interval. All axes are divided into quartiles.

and 2000 (data not presented). Caviness and Thomas difference relationship appears quite robust across grow-
ing seasons with different amounts and timing of pre-(1980) reported that yield reduction of defoliated soy-

bean was similar under irrigated and nonirrigated condi- cipitation.
Our data also provide a strong relationship acrosstions, even in extremely and moderately dry growing

seasons, and that reductions in pod number appeared row spacings. We evaluated biomass removal in row
spacings ranging from 18 to 76 cm. Midwest researchto be the yield component primarily responsible for the

yield losses. Consequently, the pod density–seed yield documented a linear decrease in seed yield and pod
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Fig. 2. Berg (1992) plot of observed vs. predicted yield difference for double cross-validation of linear and polynomial exponential models using
randomly split data sets. Yield difference is between mean biomass removal treatments and the control (no biomass removal). Low biomass
removal treatments include V5, R1, V5 � R1, and V6 � R1; medium treatments include R4, V5 � R4, R1 � R4, and V1 � V3 � V6; and
high treatments include V5 � R1 � R4, R1 � R4 � R6, and V1 � V3 � V6 � R1 � R4 � R6.

number per plant as row width increased in indetermi- vars, particularly when biomass removal occurs during
reproductive development.nate soybean (Bullock et al., 1998) while Board et al.

(1992) under Louisiana conditions reported that the The second objective of this study was to assess the
predictive performance of the tools. The entire data setmain factors responsible for increased yields in narrow

rows were greater fertile node production and increased was randomly split into two equal separate sets. By ran-
domly splitting the data, we averaged across years withpod number per fertile node. Clearly, the relationship

we are reporting between pod density difference and different amounts and timing of precipitation and cul-
tural practices. The 2000–2001 experiment had two vari-seed yield difference is not as sensitive to row spacing.

Additionally, Fehr et al. (1977) reported that cultivars eties (MG 3.5 and 3.9, respectively), three row spacings,
and more frequent biomass removal than the 1998–1999within location responded similarly to defoliation and

half-plant cutoff for most of the measured characters study, which used conventional tillage, a different MG
3.5 variety, similar narrow and wide row spacings, andand that the percentage change was similar. They con-

cluded, however, that the determinateness of a cultivar similar intensity, but less frequent, biomass removal.
Although abiotic conditions and cultural practicesshould be considered when assessing yield reduction

from defoliation and half-plant cutoff during reproduc- were different, the random split of the data into two
sets provided a high degree of prediction. The Lineartive development. Consequently, inference from the re-

lationship between pod density and seed yield that we Model Set 2, which was predicted using the Set 1 data
(Fig. 2A), had a coefficient of determination slightlyare reporting should be limited to indeterminate culti-
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lower than the full data set (n � 38, R2 � 0.91, RMSE � Conclusions
56). Not surprisingly, the most extreme yield loss oc- A strong relationship exists in soybean between podcurred in the treatment where biomass was removed at density difference and seed yield difference using simu-three vegetative and reproductive growth stages. The

lated biomass removal techniques. Cross-validation ofPE Model Set 2, which was predicted from the Set 1
both models also produced strong relationships withdata (Fig. 2B), had a coefficient of determination slightly
high coefficients of determination and predictive abilitylower than the full data set (n � 38, R2 � 0.91, RMSE �
within 5 to 6% of actual values. Consequently, both the56). Predictive ability for both models was high although
linear and PE models can be used as tools to predictmean bias error was higher for the linear (8.03 � 9.15 g
yield loss in soybean damaged by deer, but the PE modelm�2) compared with the PE model (7.91 � 9.17 g m�2).
performs somewhat better. This approach to quantifyBoth mean bias error estimates were systematically
yield loss does not totally eliminate the need for repre-overestimating yield loss difference, but these bias esti-
sentative exclosures to be established for reference soy-mates were not significant (t � 0.88 and 0.86 for the
bean yield in areas where high deer densities occur.linear and PE models, respectively). Using a weighted
Nevertheless, implementing this approach can increaseOLS model, the t statistic for the linear (1.4) and PE
the efficiency of quantifying indeterminate soybean(1.7) models indicated that the intercepts were not sig-

nificant, and both slope estimates included 1 in the yield loss to deer damage on a larger scale and provide
95% CI. an objective methodology. Validating the relationship

The cross-validation using Set 2 data to predict Set 1 using additional data should be the next step before im-
values for the linear model (Fig. 2C) had a coefficient plementation.
of determination slightly lower than the full data set
(n � 38, R2 � 0.91, RMSE � 55). One data point in

Referencesthe high category was not predicted well. This data point
Berg, R.L. 1992. First place. Best presentation of data-monochrome.was from a treatment that included biomass removal at

p. 1521–1527. In Proc. Annu. SAS Users Group Int. Conf., 17th,R1 � R4 � R6 growth stages in 2001, a year with
Honolulu, HI. 12–15 Apr. 1992. SAS Inst., Cary, NC.favorable precipitation. The PE model using Set 2 to

Board, J.E., and B.G. Harville. 1993. Soybean yield component re-predict Set 1 (Fig. 2D) had a slightly higher coefficient sponses to a light interception gradient during the reproductive
of determination (n � 38, R2 � 0.92, RMSE � 48) period. Crop Sci. 33:772–777.
than the first assessment and slightly lower than the full Board, J.E., M. Kamal, and B.G. Harville. 1992. Temporal importance

of greater light interception to increased yield in narrow-row soy-model using the entire data set. The PE model had
bean. Agron. J. 84:575–579.lower mean bias error (–9.29 � 7.68 g m�2) than the

Board, J.E., and Q. Tan. 1995. Assimilatory capacity effects on soy-linear model (–12.08 � 8.78 g m�2). Using the Set 2 data
bean yield components and pod number. Crop Sci. 35:846–851.to predict Set 1 values systematically underestimated Bullock, D., S. Khan, and A. Rayburn. 1998. Soybean yield response

yield loss for both models although neither bias term to narrow rows is largely due to enhanced early growth. Crop
was significant. Both slope estimates included 1 in the Sci. 38:1011–1016.

Caviness, C.E., and J.D. Thomas. 1980. Yield reduction from defolia-95% CI using a weighted OLS model with the regression
tion of irrigated and non-irrigated soybeans. Agron. J. 72:977–980.line through the origin. The PE model performed better

Conover, M.R. 1994. Perceptions of grass-roots leaders of the agricul-than the linear model for the Set 1 cross-validation using
tural community about wildlife damage on their farms and ranches.Set 2 for prediction. Depending on the end-user’s needs Wildl. Soc. Bull. 22:94–100.

for these tools, the simplicity of the linear model should Conover, M.R. 1997. Monetary and intangible valuation of deer in
be carefully considered in weighing the benefits of the United States. Wildl. Soc. Bull. 25:298–305.

Conover, M.R. 1998. Perceptions of American agricultural producerseach tool.
about wildlife on their farms and ranches. Wildl. Soc. Bull. 26:Typically, wildlife biologists and crop scientists install
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Conover, M.R., and D.J. Decker. 1991. Wildlife damage to crops:the exclosure to yield outside the exclosure to determine
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Fehr, W.R., C.E. Caviness, and J.J. Vorst. 1977. Response of indeter-termining yield inside the exclosure, however, is ex-
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Goli, A., and D.B. Weaver. 1986. Defoliation responses of determinatemerely relies on counting the number of pods per unit
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Kaspar, T.C., T.S. Colvin, D.B. Jaynes, D.L. Karlen, D.E. James,outside the exclosure. Even though exclosures are still
D.W. Meek, D. Pulido, and H. Butler. 2003. Relationship betweenrequired for control data, this process can reduce the six years of corn yields and terrain attributes. Precis. Agric. 4:

time it takes to quantify yield loss by about 85%, or to 87–101.
about 1 h per field. This is a major time savings and will Montgomery, D.C., and E.A. Peck. 1982. Introduction to linear regres-

sion analysis. John Wiley & Sons, New York.increase the efficiency of quantifying soybean yield loss.
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